Chapitre 4 : Dérivation

Capacité	Exercices du livre	Base Euler
Déterminer le nombre dérivé d'une fonction en	P68: 1 à 4; 17 à 30; 122	
utilisant le taux d'accroissement		
Déterminer graphiquement une tangente, un	P68:5à8;33à41	52
nombre dérivé / Tracé d'une tangente		
Déterminer l'équation d'une tangente	P68: 31 à 32	
Calculer les dérivées des fonctions usuelles	P68: 9 à 13; 42 à 51; 54 à 56; 59 à 63; 66 à 70	
Calculer des dérivées de produits et quotients de	P68: 14 à 16; 71 à 121	30; 31; 32; 33; 1489; 1491; 1516; 1586;
fonctions usuelles		1963 ; 1965 ; 1966 ; 3012 ; 3013 ; 3014 ; 3019 ;
		3020 ; 3021
Déterminer des tangentes particulières	P68: 52 à 53; 57 à 58; 64 à 65	
Exercices Bilan	P68: 123 à 138	

ROC

- ullet Démontrer la formule de l'équation d'une tangente à la courbe de la fonction f au point d'abscisse a
- Démontrer que la dérivée de $f: x \mapsto x^2$ sur \mathbb{R} est $f': x \mapsto 2x$.
- Démontrer que la dérivée de $f: x \mapsto \frac{1}{x} \operatorname{sur} \mathbb{R} \operatorname{est} f': x \mapsto -\frac{1}{x^2}$
- Démontrer que la dérivée de $f: x \mapsto \sqrt{x}$ sur $]0; +\infty[$ est $f': x \mapsto \frac{1}{2\sqrt{x}}$
- Démontrer que la dérivée de u+v et $u\times v$ où u et v sont deux fonctions dérivables est u'+v' et u'v+uv'.
- Démontrer que la dérivée de $\frac{1}{v}$ et de $\frac{u}{v}$ où u et v sont deux fonctions dérivables avec v qui ne s'annule pas est $-\frac{v'}{v^2}$ et $\frac{u'v-uv'}{v^2}$