Correction devoir surveillé n°3 – Sujet A

Exercice 1

1) Pour résoudre l'équation f(x) = k, on trace la droite horizontale passant par k en ordonnée. On lit les abscisses des points d'intersection de la courbe de la fonction f avec la droite.

Pour résoudre l'équation f(x) = g(x), on lit les abscisses des points d'intersection des deux courbes de f et g.

a.
$$f(x) = 3: S = \{-2; 5\}$$

c.
$$f(x) = 0 : S = \{-1, 4\}$$

b.
$$f(x) = -4 : S = \emptyset$$

d.
$$f(x) = g(x) : S = \{0, 4\}$$

2) Pour résoudre graphiquement $f(x) \ge k$, on lit les abscisses des points de la courbe de f qui se situent au dessus de la droite horizontale passant par k en ordonnées.

Pour résoudre $f(x) \ge g(x)$, on lit les abscisses des points de la courbe de f au dessus de ceux de la courbe de g.

a.
$$f(x) < 3 : S =]-2;5[$$

$$S =]-\infty; 0] \cup [4; +\infty[$$

d. $f(x) \ge g(x)$:

b.
$$f(x) \ge -2 : S =]-\infty; 0] \cup [3; +\infty[$$

e.
$$f(x) < g(x) : S =]0; 4[$$

c.
$$f(x) \le 0 : S = [-1; 4]$$

3) Tableau de signe de
$$f$$
:

,							
x	$-\infty$		-1		4		8+
Signe de <i>f</i>		+	0	_	0	+	

4) Tableau de variations de f:

x	-∞	1,5	+∞
Variations de <i>f</i>		≈ -3, 2	*

Exercice 2

- 1) 0 a trois antécédents par $f: \boxed{1; 0 \text{ et } -4}$
- 2) S =]-2;4[
- 3) Les solutions sont environ : $\boxed{-1,4;1,4\text{ et }19,7}$

Exercice 3

1)
$$f(x) = 9(x^2 - 6x + 9) - 36 = 9x^2 - 54x + 45$$

2)
$$f(x) = [3(x-3)]^2 - 6^2 = [3(x-3)+6][3(x-3)-6] = (3x-3)(3x-15)$$

ou
$$f(x) = 9[(x-3)^2 - 4] = 9[x-3-2][x-3+2] = 9(x-5)(x-1)$$

3) Pour les antécédents de 0, on utilise la forme factorisée :

 $f(x) = 0 \Leftrightarrow 3x - 3 = 0$ ou 3x - 15 = 0 car un produit est nul si et seulement si l'un de ses facteurs est nul $\Leftrightarrow 3x = 3$ ou $3x = 15 \Leftrightarrow x = 1$ ou x = 5

Donc 0 a deux antécédents par f:1 et 5

Antécédents de
$$-36$$
: $f(x) = -36 \Leftrightarrow 9(x-3)^2 = 0 \Leftrightarrow x-3 = 0 \Leftrightarrow x = 3$

Donc -36 a un unique antécédent par f:3.

Antécédent de
$$45: f(x) = 45 \Leftrightarrow 9x^2 - 54x + 45 = 45 \Leftrightarrow 9x^2 - 54x = 0 \Leftrightarrow 9x(x-6) = 0$$

$$\Leftrightarrow 9x = 0$$
 ou $x - 6 = 0 \Leftrightarrow x = 0$ ou $x = 6$

Donc 45 a deux antécédents par f:0 et 6

Antécédents de 64 :
$$f(x) = 64 \Leftrightarrow 9(x-3)^2 - 36 = 64 \Leftrightarrow 9(x-3)^2 - 100 = 0 \Leftrightarrow [3(x-3)]^2 - 10^2 = 0$$

$$\Leftrightarrow (3x - 9 + 10)(3x - 9 - 10) = 0 \Leftrightarrow 3x + 1 = 0 \text{ ou } 3x - 19 = 0 \Leftrightarrow x = -\frac{1}{3} \text{ ou } x = \frac{19}{3}$$

Donc 64 a deux antécédents par
$$f:-\frac{1}{3}$$
 et $\frac{19}{3}$.

Correction devoir surveillé n°3 – Sujet B

Exercice 1

1) Pour résoudre l'équation f(x) = k, on trace la droite horizontale passant par k en ordonnée. On lit les abscisses des points d'intersection de la courbe de la fonction f avec la droite.

Pour résoudre l'équation f(x) = g(x), on lit les abscisses des points d'intersection des deux courbes de f et g.

a.
$$f(x) = 5 : S = \{-5, 2\}$$

b.
$$f(x) = 0 : \overline{S = \{-3; 0\}}$$

c.
$$f(x) = -3 : S = \emptyset$$

d.
$$f(x) = g(x) : S = \{-3, 1\}$$

2) Pour résoudre graphiquement $f(x) \ge k$, on lit les abscisses des points de la courbe de f qui se situent au dessus de la droite horizontale passant par k en ordonnées.

Pour résoudre $f(x) \ge g(x)$, on lit les abscisses des points de la courbe de f au dessus de ceux de la courbe de g.

a.
$$f(x) < 5 : S =]-5; 2[$$

b.
$$f(x) \ge -1$$
:

b.
$$f(x) \ge -1$$
: $S =]-\infty; -2] \cup [-1; +\infty[$

c.
$$f(x) \ge 0 : S =]-\infty; -3] \cup [0; +\infty[]$$

d.
$$f(x) \le g(x) : S = [0; 4]$$

d.
$$f(x) \le g(x) : S = [0; 4]$$

e. $f(x) > g(x) : S =]-\infty; -3[\cup]1; +\infty[$

3) Tableau de signe de f:

x	$-\infty$		-3		0		+∞
Signe de f		+	0	_	0	+	

4) Tableau de variations de f:

x	-∞	-1,5	+∞
Variations de <i>f</i>		≈ -1,Z	•

Exercice 2

- 1) 0 a trois antécédents par f: |2; 0 et -4|
- 2) $S =]-\infty; -4[\cup]3; +\infty[$
- 3) Les solutions sont environ : -1,4; 1,4 et -19,7

Exercice 3

1)
$$f(x) = 36(x^2 - 4x + 4) - 9 = 36x^2 - 144x + 135$$

2)
$$f(x) = [6(x-2)]^2 - 3^2 = [6(x-2) + 3][6(x-2) - 3] = (6x-9)(6x-15)$$

ou
$$f(x) = 36\left[(x-2)^2 - \frac{1}{4}\right] = 36\left[x-2 - \frac{1}{2}\right]\left[x-2 + \frac{1}{2}\right] = 36\left[x - \frac{5}{2}\right](x - \frac{3}{2})$$

3) Pour les antécédents de 0, on utilise la forme factorisée :

 $f(x) = 0 \Leftrightarrow 6x - 9 = 0$ ou 6x - 15 = 0 car un produit est nul si et seulement si l'un de ses facteurs est nul \Leftrightarrow 6x = 9 ou 6x = 15 \Leftrightarrow x = 1,5 ou x = 2,5

Donc 0 a deux antécédents par f:1,5 et 2,5

Antécédents de
$$-9$$
: $f(x) = -9 \Leftrightarrow 36(x-2)^2 = 0 \Leftrightarrow x-2 = 0 \Leftrightarrow x = 2$

Donc -36 a un unique antécédent par f:2.

Antécédent de
$$135 : f(x) = 135 \Leftrightarrow 36x^2 - 144x + 135 = 135 \Leftrightarrow 36x^2 - 144x = 0 \Leftrightarrow 36x(x-4) = 0 \Leftrightarrow 36x = 0 \text{ ou } x - 4 = 0 \Leftrightarrow x = 0 \text{ ou } x = 4$$

Donc 135 a deux antécédents par f:0 et 4

Antécédents de 72 :
$$f(x) = 72 \Leftrightarrow 36(x-2)^2 - 9 = 72 \Leftrightarrow 36(x-2)^2 - 81 = 0 \Leftrightarrow [6(x-2)]^2 - 9^2 = 0$$

$$\Leftrightarrow (6x - 12 + 9)(6x - 12 - 9) = 0 \Leftrightarrow 6x - 3 = 0 \text{ ou } 6x - 21 = 0 \Leftrightarrow x = \frac{1}{2} \text{ ou } x = \frac{7}{2}$$

Donc 72 a deux antécédents par f: 0,5 et 3,5.