Devoir maison n°10

Exercice 1

Pour tout réel m, on définit la fonction $h_m: x \mapsto \frac{mx-2}{2x-m}$ et on note C_m sa courbe représentative dans un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$.

- 1) Déterminer l'ensemble de définition de h_m que l'on notera D_m .
- 2) Donner une expression simplifiée des fonctions h_2 et h_{-2} .
- 3) Pour chacune des fonctions h_0 et h_{-3} , étudier les limites aux bornes de leur ensemble de définition, les variations et regrouper les résultats dans un tableau de variations.
- 4) Déterminer les points d'intersections des deux courbes C_0 et C_{-3} .
- 5) On considère deux nombres distincts m et n dans $\mathbb{R} \{2; -2\}$. Montrer que les courbes C_m et C_n ont exactement deux points d'intersection à déterminer.
- 6) On considère un nombre m dans $\mathbb{R} \{2; -2\}$.
 - a. Calculer les limites de h_m en $-\infty$ et en $+\infty$.
 - b. Calculer, en fonction des valeurs de m, les limites à gauche et à droite de h_m en $\frac{m}{2}$.
 - c. Calculer la dérivée de h_m et étudier, selon les valeurs de m, les variations de h_m .
- 7) On considère $m \in \mathbb{R} \{2; -2\}$. Démontrer que la courbe C_m admet un centre de symétrie que nous noterons A_m . Préciser, en fonction de m, les coordonnées du point A_m .
- 8) Déterminer l'ensemble Γ de tous les centres de symétrie A_m pour $m \in \mathbb{R} \{2; -2\}$.
- 9) Dans un repère, tracer C_2 , C_{-2} , C_0 , C_{-3} ainsi que l'ensemble Γ .

Exercice 2

On considère un quadrilatère quelconque ABCD.

- 1) Construire, en justifiant, le barycentre I des points (A; 1), (B; 1) et (C; 2).
- 2) On considère un nombre réel m et on définit G_m le barycentre de (A; m), (B; m), (C; 2m) et $(D; (m-2)^2)$.
 - a. Pour quelles valeurs de m le point G_m existe-t-il ? Justifier.
 - b. Construire, en justifiant, les points G_{-2} , G_0 et G_2 .
 - c. Démontrer que pour tout réel m, on a $\overrightarrow{DG_m} = \frac{4m}{m^2 + 4} \overrightarrow{DI}$.
- 3) On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{4x}{x^2+4}$.
 - a. Déterminer les limites de f en $-\infty$ et en $+\infty$.
 - b. Etudier les variations de la fonction f.
 - c. Quelles sont les valeurs prises par f(x) quand x décrit \mathbb{R} ?
- 4) Déduire des questions précédentes l'ensemble Γ de tous les points G_m . Tracer Γ .