Correction devoir maison n°9

Exercice 1

1) f est une fonction définie et dérivable sur \mathbb{R}^+ . Elle est de la forme u+v avec u=x et $v=-\sin(x)$. On a $\operatorname{donc} f'(x) = 1 - \cos(x).$

Pour étudier le signe de f'(x), on utilise le fait que pour tout nombre x, on a $\cos(x) \le 1$ donc $1 - \cos(x) \ge 0$. On a donc $f'(x) \ge 0$ sur \mathbb{R}^+ .

On en déduit que la fonction f est croissante sur \mathbb{R}^+ .

De plus, comme f(0) = 0, le minimum de f sur \mathbb{R}^+ est 0 et pour tout $x \in \mathbb{R}^+$, on a $f(x) \ge 0$.

2) g est une fonction de la forme u+v avec $u=-1+\frac{x^2}{2}$ et $v=\cos(x)$ donc u'=x et $v'=-\sin(x)$. g est donc définie et dérivable sur \mathbb{R}^+ .

On en déduit : $g'(x) = x - \sin(x) = f(x) \ge 0$ d'après la question précédente.

Donc la fonction g est croissante sur \mathbb{R}^+ .

De plus, comme g(0) = -1 + 0 + 1 = 0, le minimum de g sur \mathbb{R}^+ est 0 et donc pour tout $x \in \mathbb{R}^+$, on a $g(x) \ge 0$.

3) h est de la forme u+v avec $u=-x+\frac{x^3}{6}$ et $v=\sin(x)$ donc h est définie et dérivable sur \mathbb{R}^+ et h'(x)= $-1 + \frac{x^2}{2} + \cos(x) = g(x) \ge 0$ d'après la question précédente.

On en déduit que la fonction h est croissante sur \mathbb{R}^+ .

De plus comme h(0)=0, le minimum de h sur \mathbb{R}^+ est 0 et pour tout $x\in\mathbb{R}^+$, on a $h(x)\geq 0$.

4) j est de la forme u+v avec $u=1-\frac{x^2}{2}+\frac{x^4}{24}$ et $v=-\cos(x)$ donc j est définie et dérivable \mathbb{R}^+ et $j'(x) = -x + \frac{x^3}{6} + \sin(x) = h(x) \ge 0$ d'après la question précédente.

Donc la fonction j est croissante sur \mathbb{R}^+

De plus comme j(0) = 0, on a pour tout $x \in \mathbb{R}^+$, $j(x) \ge 0$.

5) Finalement, grâce aux questions 1 et 3, on a $x - \sin(x) \ge 0$ ce qui signifie $\sin(x) \le x$ et $-x + \frac{x^3}{6} + \sin(x) \ge 0$ 0 ce qui signifie $\sin(x) \ge x - \frac{x^3}{6}$.

Tout ceci donne donc : $x - \frac{x^3}{6} \le \sin(x) \le x$ pour tout $x \in \mathbb{R}^+$.

De la même façon, avec les questions 2 et 4, on trouve $1 - \frac{x^2}{2} \le \cos(x) \le 1 - \frac{x^2}{2} + \frac{x^4}{24}$.

Exercice 2

1)
$$4(\sqrt{2}-\sqrt{3})^2 = 4(2-2\sqrt{6}+3) = 20-8\sqrt{6}$$

2) L'équation est une équation de degré 2. On calcule donc le discriminant :

$$\Delta = \left(-2\left(\sqrt{2} + \sqrt{3}\right)\right)^2 - 4 \times 4 \times \sqrt{6} = 4\left(2 + 2\sqrt{6} + 3\right) - 16\sqrt{6} = 20 - 8\sqrt{6} = 4\left(\sqrt{2} - \sqrt{3}\right)^2 \text{ et on en déduit } \sqrt{\Delta} = 2\left|\sqrt{2} - \sqrt{3}\right| = 2\left(\sqrt{3} - \sqrt{2}\right)$$

en utilisant la question précédente. Donc $\Delta > 0$ et il y a deux solutions à l'équation :

$$x_{1} = \frac{2(\sqrt{2} + \sqrt{3}) + \sqrt{4(\sqrt{2} - \sqrt{3})^{2}}}{8} = \frac{2\sqrt{2} + 2\sqrt{3} + 2(\sqrt{3} - \sqrt{2})}{8} = \frac{\sqrt{3}}{2}$$

$$x_{2} = \frac{2(\sqrt{2} + \sqrt{3}) - \sqrt{4(\sqrt{2} - \sqrt{3})^{2}}}{8} = \frac{2\sqrt{2} + 2\sqrt{3} - 2(\sqrt{3} - \sqrt{2})}{8} = \frac{\sqrt{2}}{2}$$

On a donc pour l'équation $4x^2 - 2(\sqrt{2} + \sqrt{3})x + \sqrt{6} = 0$: $S = \{\frac{\sqrt{2}}{2}; \frac{\sqrt{3}}{2}\}$

Pour l'inéquation, on utilise que le trinôme de degré 2 est du signe de a=4 sauf entre les deux racines x_1 et x_2

donc
$$S = \left] -\infty; \frac{\sqrt{2}}{2} \left[\cup \right] \frac{\sqrt{3}}{2}; +\infty \left[\right]$$

3) On pose $X = \cos(x)$. L'équation à résoudre devient donc $4X^2 - 2(\sqrt{2} + \sqrt{3})X + \sqrt{6} = 0$.

D'après la question précédente $X = \frac{\sqrt{2}}{2}$ ou $X = \frac{\sqrt{3}}{2}$.

On doit donc résoudre $\cos(x) = \frac{\sqrt{2}}{2}$ et $\cos(x) = \frac{\sqrt{3}}{2}$ dans $[-\pi; \pi]$.

Finalement
$$S = \left\{ -\frac{\pi}{4}; \frac{\pi}{4}; -\frac{\pi}{6}; \frac{\pi}{6} \right\}$$

Pour l'inéquation, de la même manière, on doit avoir $X < \frac{\sqrt{2}}{2}$ ou $X > \frac{\sqrt{3}}{2}$ ce qui revient à résoudre dans $[-\pi; \pi]$: $\cos(x) < \frac{\sqrt{2}}{2}$ et $\cos(x) > \frac{\sqrt{3}}{2}$.

On trouve donc, grâce au cercle trigonométrique : $S = \left[-\pi; -\frac{\pi}{4} \right[\cup \left] -\frac{\pi}{6}; \frac{\pi}{6} \right[\cup \left] \frac{\pi}{4}; \pi \right]$

4) On pose cette fois $X=\sin\left(\frac{\pi}{3}+2x\right)$. Comme à la question précédente, on trouve $X=\frac{\sqrt{2}}{2}$ ou $X=\frac{\sqrt{3}}{2}$, autrement dit, on doit résoudre $\sin\left(\frac{\pi}{3}+2x\right)=\frac{\sqrt{2}}{2}$ et $\sin\left(\frac{\pi}{3}+2x\right)=\frac{\sqrt{3}}{2}$ dans $[0;\pi]$. Pour cela, on pose $y=\frac{\pi}{3}+2x$.

Comme $x \in [0; \pi]$, on doit avoir $y \in \left[\frac{\pi}{3}; \frac{7\pi}{3}\right]$ et $\sin(y) = \frac{\sqrt{2}}{2}$ ou $\sin(y) = \frac{\sqrt{3}}{2}$.

Les solutions pour y sont donc : $\frac{\pi}{3}$; $\frac{2\pi}{3}$; $\frac{3\pi}{4}$; $\frac{9\pi}{4}$.

On est donc ramené à quatre équations : $\frac{\pi}{3} + 2x = \frac{\pi}{3}$...

On trouve quatre solutions : $S = \left\{0; \frac{\pi}{3}; \frac{5\pi}{12}; \frac{23\pi}{12}\right\}$